Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:
In geology, a bed is a layer of sediment, sedimentary rock, or pyroclastic material "bounded above and below by more or less well-defined bedding surfaces". Specifically in sedimentology, a bed can be defined in one of two major ways. First, Campbell and Reineck and Singh use the term bed to refer to a thickness-independent layer comprising a coherent layer of sedimentary rock, sediment, or pyroclastic material bounded above and below by surfaces known as bedding planes. By this definition of bed, laminae are small beds that constitute the smallest (visible) layers of a hierarchical succession and often, but not always, internally comprise a bed.
Alternatively, a bed can be defined by thickness where a bed is a coherent layer of sedimentary rock, sediment, or pyroclastic material greater than 1 cm thick and a lamina is a coherent layer of sedimentary rock, sediment, or pyroclastic material less than 1 cm thick. This method of defining bed versus lamina is frequently used in textbooks, e.g., Collinson & Mountney or Miall. Both definitions have merit and the choice of which one to use will depend on the focus of the specific study on a case by case basis.
In geology, a bedding surface is either a planar, nearly planar, to wavy or curved 3-dimensional surface that visibly separates each successive bed (of the same or different lithology) from the preceding or following bed. Where bedding surfaces occur as cross-sections, e.g., in a 2-dimensional vertical cliff face of horizontal strata, are often referred to as bedding contacts. Within conformable successions, each bedding surface acted as the depositional surface for the accumulation of younger sediment.
Typically, but not always, bedding surfaces record changes in either the rate or type of accumulating sediment that created the underlying bed. Typically, they represent either a period of nondeposition, erosional truncation, shift in flow or sediment regime, abrupt change in composition, or combination of these as a result of changes in environmental conditions. As a result, a bed is typically, but not always, interpreted to represent a single period of time when sediments or pyroclastic material accumulated during uniform and steady paleoenvironmental conditions. However, some bedding surfaces may be postdepositional features either formed or enhanced by diagenetic processes or weathering.
The relationship between bedding surfaces controls the gross geometry of a bed. Most commonly, the bottom and top surfaces of beds are subparallel to parallel to each other. However, some bedding surfaces of a bed are nonparallel, e.g., wavy, or curved. Differing combinations of nonparallel bedding surfaces results in beds of widely varying geometric shapes such as uniform-tabular, tabular-lenticular, curved-tabular, wedge-shaped, and irregular beds.
Types of beds include cross-beds and graded beds. Cross-beds, or "sets," are not layered horizontally and are formed by a combination of local deposition on the inclined surfaces of ripples or dunes, and local erosion. Graded beds show a gradual change in grain or clast sizes from one side of the bed to the other. A normal grading occurs where there are larger grain sizes on the older side, while an inverse grading occurs where there are smaller grain sizes on the older side.